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A b s t r a c t  

A conformal Lie superalgebra is a superextension of the centerless Virasoro algebra W--the Lie 
algebra of complex vector fields on the circle. The algebras of Ramond and Neveu-Schwarz are 
not the only examples of such superalgebras. All known superconformal algebras can be obtained 
as comlexifications of Lie superalgebras of vector fields on a supercircle with an additional 
structure. For every such superalgebra G a class of geometric objects--complex ~-supercurves-- 
is defined. For the superalgebras of Neveu-Schwarz and Ramond they are super Riemann surfaces 
with punctures of different kinds. We construct moduli superspaces for compact ~-supercurves, 
and show that the superalgebra ~ acts infinitesimally on the corresponding moduli space. 

Keywords: Lie superalgebras; super Riemann surfaces; 
1991 MSC: 17 B 70, 32 C 11, 32 G 13 

I .  I n t r o d u c t i o n  

The recent developments in the theory of  quantum strings and two-dimensional con- 

formal field theories connected two seemingly remote branches of  mathematics: the 

theory of  infinite dimensional  Lie algebras and their representations and the geometry 

of  moduli  spaces of  the Riemann surfaces and vector bundles on them. 

The first corresponds to the Hamiltonian (operator)  formalism, and the second arises 

in the Lagrangian (path integral) picture. 
In [M1 ] Yu. Manin gave some evidence for the existence of  a direct mathematical 

connection between these two theories and conjectured on the possible form it might  

have. 
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The connection has been simultaneously established in [ACKP, BS, K]. It turned out 
that the Lie algebra W (usually called the Witt algebra or centerless Virasoro algebra) 
of complex-valued vector fields on the circle acts on the space of triples (C, p, z ), where 
C is a compact Riemann surface, p E C, and z is a local parameter at p. 

This action changes the complex structure on C and pushes down to an infinitesimal 
transitive action of W on the space .A4g of compact Riemann surfaces of genus g. 
The Virasoro algebra 15', a nontrivial central extension of W, acts in the total space 
of the determinant bundle over .Adg. This is due to isomorphism between the second 
cohomology group of A//g and the second cohomology of the adjoint representation of 
W. In terms of this action one can write the differential equations for the Polyakov- 
Mumford measure on the moduli space, for the correlator functions, etc. 

In the theory of fermionic strings the operator formalism and Polyakov's path inte- 
gral relate, respectively, the representation theory of the Neveu-Schwarz superalgebra 
(shortly, NS) and the moduli spaces of ( 111 )-dimensional supermanifolds with a contact 
structure (also known as super Riemann surfaces or SUSY-curves). The mathematical 
counterpart of this relationship has not yet been understood as well as in the bosonic 
case, but even the obtained results (see [D1, Vo, Ma2, UY]) leave no doubt that 
everything here is analogous to the non-super situation. 

Since the early 70s it has been known that besides the Neveu-Schwarz superalgebra 
there exist other simple superextensions of the Witt algebra, some of them having 
nontrivial central extensions similar to the Virasoro algebra. 

The problem of classifying such superconformal Lie superalgebras and their central 
extensions was first addressed by Leites and Feigin [FL]. They found that all known 
superconformal Lie superalgebras have a natural geometric interpretation. These super- 
algebras are subalgebras of the Lie superalgebra W(IIN) of Laurent vector fields on 
the superdisk U IIN = ( U , C [ Z , Z  -1 ] ® A*(CN), where U =  {z c C ] 0 < Izl < 1), or, 

in other words, of the superalgebra of derivations of OU~IN = C[ Z - l ,  Z, Oj ..... ON]. Such 
subalgebras form several series (cf. Section 2.2). 

The list of cocycles and even of the algebras themselves in [FL] is incomplete. The 
classification was renewed by Kac and van de Leur [KL], who conjectured that the list 
is now complete. 

Representations of superconformal superalgebras other than NS are under active study, 
but the geometric side of the picture, sketched above for the Virasoro algebra, has not 
been developed fully. Only quite recently have papers on moduli spaces of N = 2 
superconformal manifolds started to appear [M4, FR, DRS], and none, so far, has 
addressed the relationship of these moduli spaces with the N = 2 superconformal Lie 
superalgebra. 

The main purpose of this paper is to define a class of geometric objects for each of 
the known superconformal Lie superalgebras G. These ~-superconformal manifolds or 
supercurves of type G are related to the corresponding Lie superalgebra in the same 
way as Riemann surfaces are related to the Virasoro algebra--the superalgebra ~ acts 
on their moduli spaces. 

For G = K( I IN) ,  the standard N-superconformal Neveu-Schwarz superalgebra, our 
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G-supercurves coincide with the N-superconformal manifolds of [DRS]. 

The main result of the paper is a theorem on the existence of a complex analytic 

moduli superspace for each of these objects. The proof is based on the technique of 
the deformation theory of superanalytic structures, similar to that used in [V1] for 
construction of the moduli space of SUSY-curves. 

For basic notions on supermanifolds and their geometry we refer the reader to [L l, 
M3]. 

2.  S u p e r c i r c l e s  

All the known superextensions of the Witt and Virasoro Lie algebras are Lie super- 

algebras of (complex valued) vector fields preserving certain geometric structures on a 
supermanifold with the circle S l as the underlying space. Therefore, first we will discuss 
these geometric objects. 

The Witt algebra is defined as the complexification of the Lie algebra of real vector 

fields on the circle. It is, as we now know, the only simple Z-graded complex Lie 

algebra of finite growth which belongs neither to Kac-Moody type algebras nor to the 
algebras of vector fields on C ' .  This algebra has several superextensions due to the fact 
that there are several superextensions of the circle. 

Definition 2.1. A supercircle is a real supermanifold M, such that its underlying mani- 
fold Mra is diffeomorphic to S 1 . 

Any real supermanifold M is split--functions on M are sections of the Grassmann 

algebra A*(E) of a vector bundle over the underlying manifold Mra. Since there exist 
only two non-equivalent vector bundles of rank n over the circle, we obtain the following 

description of supercircles. 

P r o p o s i t i o n  2.2. For any N > 0 there are only two supercircles o f  dimension 1 IN: 

S J I N = ( S  1 A*(NN)) and ¢11N , ~+  = ( S  I , A* (R N-1 0 M ) ) ,  

where M is the MObius line bundle over the circle. 

(1) 

K, IIN Remark  2.3. The supercircle ~+ is diffeomorphic to the projective superspace RP llN 

2.1. Geometric structures on supercircles 

Whereas the circle S 1 has very little room for extra geometric structures, the su- 
percircles S ltN and ¢11N may be equipped with additional structures and still have a ~+ 

sufficiently large diffeomorphism group. 
Let S be a supercircle of dimension 1 IN. Fix on S a coordinate system (t, O) =(t,  01, 

. . . .  ON-I,ON), where t E S 1 = {z C C I Iz[ = 1}, Oj . . . . .  ON-1 are sections of trivial 
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line bundles over S l , and ON is a section of the trivial line bundle if S = S llN and of the 
M6bius one if S = SI+ IN. 

We will call an equipped supercircle one of the following objects: 
(1) S, the supercircle S 1IN. 

(2) S,~, the supercircle S 1IN with a volume form A on it. 

(3) S,~,a, the supercircle S 1IN with the volume form tad. 

(4) SK, the supercircle $11N with an even contact structure V C Ts~lu--maximally 
non-integrable distribution of codimension ll0. 

There exists a coordinate system on S 1IN in which the distribution is given as kernel 
of the 1-form 

N 

to = dt  - Z Oi dOi. 
i=1 

(2) 

(5) St+, the supercircle S~ N with an even contact structure. 
(6) S,,, the supercircle S 112 with odd contact structure given by the 1-form 

rr = O1 - tO2 - Ol dt. (3) 

It is not difficult to show that these objects have a large group of automorphisms and 
that there is essentially one such object in every class. 

Proposition 2.4. Let S be an equipped supercircle. Then 

(i) any orientation preserving diffeomorphism of  S 1 can be lifted to an automorphism 
of  S;  

(ii) any two such objects Si and $2 of  the same type are equivalent. 

Supergroups of diffeomorphisms of these objects, the corresponding Lie superalge- 
bras and their complexifications are supergeneralizations of respectively D i f f + ( S  1 ), 
Vect( S 1 ) and W = Vectc( S 1 ). 

2.2. Complexifications 

The Witt algebra--the complexification of the Lie algebra of polynomial vector fields 
on the circle--can be realized as the Lie algebra of Laurent vector fields on the punctured 
unit disk U = {t C C I 0 < Itl < 1). 

The complexifications of Lie superalgebras of polynomial vector fields on equipped 
supercircles become Lie superalgebras of Laurent polynomial vector fields on superex- 
tensions of the punctured disk U. Since all holomorphic bundles over a Stein manifold 
are trivial, the only (llN)-dimensional complex supermanifold M with Mrd = U is 
u I I N =  ( U , C [ t , t  - l  ] (~ A*[01 . . . . .  ON]). 

The following superdisks with additional structures will be considered as "complexi- 
fications" of the corresponding equipped supercircles from 2.1. 

( 1 ) The superdisk U l IN. 
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(2) U,~, the superdisk U IIN with a holomorphic volume form d (= nowhere vanishing 

section of the Berezinian line bundle) with constant coefficients. 
(3) Ua,a, the superdisk U llN with the volume form Aa = tad. 2 
(4) UK, the superdisk U ~LN with a holomorphic contact structure given by the 1- 

form to (eq. 2). This contact structure extends to a contact structure on the whole 
non-punctured superdisk 0 llN. 

(5) Ux+, the superdisk U 1IN with a contact structure given by the 1-form 

N--I 

to+ = dt - Z Oi dOi - tON dON. (4) 
i=1 

This form does not define a contact structure on 0 JIu. 

(6) U,~, the superdisk U 112 with the odd contact structure given by the 1-form (3). 

Proposition 2.5 ( [FL] ) .  Let G be the Lie superalgebra of Laurent polynomial vector 
fields on U 1 [N preserving one of the structures (1)-(6) above. Then G is isomorphic to the 
complexification of the Lie superalgebra of the supergroup of polynomial automorphisms 
of the corresponding equipped supercircle. 

3. Superconformal algebras 

Definition 3.1 ( [ K L ] ) .  A complex Z-graded Lie superalgebra G = ~)Gi  is called 
superconformal if 

(i) ~ is simple; 
(ii) ~ contains the Witt algebra W as a subalgebra; 

(iii) ~ has growth I. 

The last condition means that dim Gj < C j, where C is a constant independent of j. 

The Lie superalgebra W( 1 [N) of all Laurent polynomial vector fields on the superdisk 
U llN can be defined as the superalgebra of all derivations of 

O N  = C [ t , t  -1 ] ®A*[01 . . . . .  ON], (5) 

where A • [01 . . . . .  ON] is the Grassmann algebra with N generators. 

Every element X C W(I lN)  can be expressed as 

U 
0 

X = fo-~ + Z f i ~ i  f i  E ON. (6) 
i=1 

The vector field X preserves the constant volume form A on U IIu if and only if its 

divergence 

2 If A ~ Z, then the form A is no longer a single-valued one. This is not a problem by the 19th century 
standards, but now an explanation is required. Proper translation into modem terminology can be done by 
using the language of branched covering spaces (cf. IV4] ). 
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divX = 
N 

Ofo + ~--~(_l)f~ ~ 
Ot i=1 

is zero, where f E Z2 is the panty 
The Lie derivative of the 1-form 

(7) 

of f C Ou. 
a = ao dt + ~ ai dOi with respect to X is defined as 

. ?ao u 0ao - ? f o  u ? 

X 

LX(°O = kJ'O cg---t+Efi--~J+(--l)X~(a°--~+Eai-~t)i,j=l i,j=l :dt 

,~=,N ('~9ak+Ef/~jk.+(--1)(a0~k- k i.,=, - -  ai-z-x-~ ) dOk. 
+ E k JO Ot i,j=l 

Now the Lie superalgebras from 
Z-graded subalgebras of W(IIN):  

(1) W(IIN) = Der(Oo) .  

(8) 

Proposition 2.4 can be described as the following 

(2) S( 1 IN) = {X ~ W( 1 IN) I divX = 0}, the divergence free superalgebra. 
(3) S(IlN,,~) = {X ~ W(IlN) I div(taX) = 0}, the deformed divergence free 

superalgebra. This algebra is well-defined for all A E C even though the corresponding 
volume form tad on U 1IN makes sense only for real A. 

(4) K(IIN)  = {X E W(I[N) I Lxro = fro for some f E ON}, the contact superalge- 
bra (to is the contact 1-form (2) on U11N). 

(5) K(I IN)+ = {X E W(IIN) ] Lxro+ = fro+ for some f c ON}, the twisted 
contact superalgebra (ro+ is the contact 1-form (4) on UIIN). 

(6) M(l12) = {X E W(IlN) I LxTr = fTr for some f E ON}, the odd contact 
superalgebra ( ~  is the odd contact 1-form (3) on UIIN). 

These algebras provide all the known examples of superconformal Lie superalgebras. 

T h e o r e m  3.2 ( [FL,KL] ). 
(a) The superalgebras W(IIN),  S(IIN, A), K(I[N),  K( I IN)+, M(112 ) contain the 

Witt algebra W as a subalgebra and have growth 1. 
(b) The superalgebras W( l IN), S( I IN, A) for N > 1 and A ~ Z, K(IIN)  for U ~¢ 4, 

K(IIN)+,  M(l [2)  are simple and, therefore, superconformal. 
(c) For G = K(114) or S( 1 IN, A) with A E Z and N > 1 the derived subsuperalgebra 

G t = [G, G] has codimension 1 in G and is simple and superconformal. 
(d) The only non-trivial isomorphisms between these superconformal algebras are 

W(l l l  ) ~ K(112) "~ M(l[2)  and S(IIN, A) ~-- S(IIN,/.z ) 

when A -  Iz c Z. 
(e) For a superconformal algebra G of (b) or (c) a non-trivial central extension exists 

only if ~ is one of the following 

W(II1); W(II2); S ( l l 2 , a ) , a~Z;  S~(I[2, A ) , A E Z ;  
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g ( l I N ) ,  N <  3; g ' ( l l 4 ) ;  M( l l2 ) .  

115 

Conjecture 3.3 ( [KL] ). Any superconformal algebra is isomorphic to one of the above 

algebras. 

Remarks 3.4. 
( 1 ) A superconformal superalgebra which has a nontrivial central extension is called 

distinguished. These superalgebras are distinguished because only such algebras have 
non-trivial unitary projective positive energy representations, which is very important 

for applications in physics. 
(2) The Lie algebra W(l l0)  is the Witt algebra W. Its nontrivial central extension is 

the Virasoro algebra f'. 
(3) The nontrivial central extensions of Lie superalgebras K( 111 ) and K+ ( 1 ] 1 ) are 

called the Neveu-Schwarz and Ramond Lie superalgebras, respectively. They were the 
first examples of superextensions of the Virasoro algebra. 

4. Supercurves corresponding to superconformal algebras 

Let us assign to every superconformal Lie superalgebra G a G-curve, which is a ( l lN)- 
dimensional complex supermanifold C with an additional structure. The superdisks 
2.2( I ) - ( 6 )  will serve as local models for the following. 

Definition 4.1. 
(1) A W(11N)-supercurve is a complex supermanifold C of dimension ( I lN)  with 

a finite number of points Pl . . . . .  Pk E C (punctures). 
(2) A S( 1 [N)-supercurve is a complex supermanifold C of dimension ( 1 IN) with a 

holomorphic volume form--a nowhere vanishing section p of the Berezinian line bundle 

Berc and a finite number of punctures. 
(3) A S(l lN, A)-supercurve is a complex supermanifold C of dimension (IIN) 

with a finite number of punctures Pl . . . . .  Pk c C and a non-vanishing section p E 
H°(C \ {pl . . . . .  Pk}; Berc) which has singularities of the type t ~ at the punctures. 

(4) A K(llN)-supercurve is a complex supermanifold C of dimension (IIN) with 

a holomorphic even contact structure and a finite number of punctures. 
(5) A K(I IN)  +-supercurve is a complex supermanifold C of dimension (IIN) with 

a finite number of punctures pl . . . . .  Pk E C and a distribution V C Tc of codimension 
110 which gives a contact structure on C \ {pl . . . . .  p~ E C}, and in a neighbourhood 

of a puncture is equivalent to the contact structure (4). 
(6) A M(I  ]2)-supercurve is a complex supermanifold C of dimension (112) with a 

holomorphic odd contact structure and a finite number of punctures. 
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Remarks  4.2. 
( 1 ) The number of punctures may be zero. In this case S( 1 IN; A)-curves will not be 

distinguished from S( 11N)-curves, and K( 1 IN) +-curves not from K( 11N)-curves. 
(2) For S(IIN;  ,D-curves in the case A ¢~ Z a rigorous definition requires more care 

(cf. footnote 2). 

4.1. Examples 

(1) The first example of a G-supercurve is the corresponding superdisk (2.2). These 

superdisks are model objects; any other G-supercurve can be built by gluing superdisks. 
(2) K( l lN)-supercurves. For a complex llN-dimensional supermanifold C and a 

0IN-dimensional distribution V C Tc the following Frobenius form is well-defined: 

~ b : V Q V - - * T c / V  : (o,w) H [v,w] modV. (9) 

The distribution V is a contact structure if ~b is a non-degenerate form. In this case 

we can find a local coordinate system O = (t,01 . . . . .  ON), such that the fields Di,o = 
O/OOi + OiO/Ot diagonalize the form ~b: [Di, Dj] = 28ijO/Ot. In coordinates O the 

distribution V = ker(dt  - ~ Oi dOi) is spanned locally by the fields Di. 
This structure is preserved by contact coordinate transformations: if O transforms to 

O r, then Di,~, = ~ Fij(O)Dj, o. This means that the notions of K( 1 ]N)-supercurves and 

N-super Riemann surfaces of [Ch, DRS] coincide. 
(3) K( 1 ] 1 ) -supercurves from the even point of view. Let C be a K( 111 )-supercurve 

(or SUSY-curve in Manin's notations [ M l ] ) .  The contact distribution V is (0] l ) -  
dimensional, therefore the Frobenius form gives an isomorphism V ® V ~_ Tc/V. Reduc- 

ing to the underlying Riemann surface Crd, we get isomorphisms Vrd @ Ud ~-- Tcrd and 

V~a ® Vr*a ~- OCrd, where S2crd is the canonical bundle of Crd. Therefore, the line bundle 
Vm is a theta characteristic (a square root of the canonical bundle). 

Now, given a theta characteristic E on a Riemann surface X with an isomorphism 
7r : E ® E ~ S2x, we can construct a K( 111 )-supercurve. Consider a ( 111 )-dimensional 

supermanifold X = (X, A*(E))  and define a contact structure V on X as given locally 
by the vector field D = O/a( + (O/Oz, where z is a local parameter on X and ( is a 
section of E, such that 7r((  ® ( )  = dz. 

(4) K(ll2)-supercurves versus W(lll)-supercurves. Locally every K(l lN)-super-  
curve C has N-subbundles of rank 011 in which the Frobenius form ~b is diagonal. 
If  there exists a global choice of such subbundles, we call the K(l lN)-supercurve C 
orientable (untwisted in the terminology of [Ch] ). 

E Deligne noticed [D2] that there exists a correspondence between oriented K( 1 ]2)- 
supercurves and W( l]l)-supercurves. If we have an oriented K(112)-supercurve C, 
we may find two subbundles E1 and E2 in V which are isotropic with respect to ~b. 
The supermanifold (Crd, A* (El,rd)) is the W(lll)-supercurve, which corresponds to 
C. The inverse construction maps a l]l-supermanifold X to the relative Grassmannian 
Gr(OI 1, Tx), which has a natural structure of oriented K( 1 ]2)-supermanifold. 
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This correspondence reflects the isomorphism K(112) ~- W(111) of superconformal 

algebras. The other isomorphism M(112) -~ W( l I l) also has a geometric counterpart. 

5. Moduli spaces 

A local complex analytic structure on the superspace of g-curves is introduced with 

the help of deformation theory [V1 ] as follows. 

Theorem 5.1. Let G be one of the superconformal Lie superalgebras of Theorem 3.2(a), 
(b). l f  G ~ S( IIN; A) with A ([ Q then for any compact G-curve C there exists a versal 
deformation ~ : C --+ B whose base B is a finite-dimensional complex supermanifold. 

Proof Let us first consider a supercurve C of W-type without punctures. Then C is 

just a compact complex supermanifold without any structures. The existence of a versal 

deformation in this case was proved in [V2]. The dimension of the base B of the 

deformation is equal to dim H t (C;Tc),  and its smoothness follows from the vanishing 

of H2(C; Tc). 
For S(llN)-supercurves we have to deform a section A C H°(C;Ber)  as well as 

the supermanifold C. This can be done by applying the theorem on deformations of 

cohomology classes of coherent analytic sheaves [V3]. 

For a supercurve of type K(I lN)  or M(I[2)  the extra structure on C is a contact 

distribution--a subbundle F of the tangent bundle Tc. By analogy with the K ( I [ I )  

case considered in [VI ], we construct first a versal deformation of C, then a versal 

deformation of F as a holomorphic bundle on C, then a simultaneous deformation of 

C and F, and at last, a deformation of the embedding f : F ~ Tc considered as an 

element of H°(S;Hom(F, Tc)).  The resulting deformation will produce a subbundle 

f" in the tangent bundle of the deformation C of the supermanifold C. Since being a 
contact structure is an open condition, 5 r is a contact structure in a neighbourhood of 

F. 

Punctures Pl . . . . .  pk and degeneracies of the volume forms and contact structures at 

them can be dealt with in a similar way. Punctures are deformed as submanifolds in 

C, and singular volume forms and contact structures as sections of coherent analytic 

sheaves on C. 

The details of the proof will appear in IV4]. 

5.1. Examples 

(1) As we know from the discussion in 4.1 a K(lll)-supercurve C is just a theta- 
characteristic on Cra. If Cra has genus g then there are precisely 4 g theta-characteristics 

on Crd. Therefore, the even part of the moduli for C has the same dimension as the 

moduli space .A4g of Riemann surfaces of genus g. But the odd part of the space of 
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deformations of C has a non-trivial structure. If  g > 1, the dimension of the moduli 

superspace is 3g - 312g - 2. 
The moduli of  K( I I 1 )-curves have been studied in numerous mathematical and phys- 

ical papers (cf. for example, [M1 ] and [BFS] ). A detailed description of the complex 
structure on this superspace can be found in [LR] and [CR]. Deligne [D1 ] constructed 
a compactification of this superspace. 

(2) A W( 111 )-supercurve C from the even point of view is just a Riemann surface 

Crd with a holomorphic line bundle E. The even part of the moduli space is, therefore, 
the total space of the universal Picard bundle over A4g. However, even this classical 

object gets a nontrivial superextension. If  g > 1 and the bundle E is not trivial, then the 

dimension of the deformation of C is 4g - 313g - 4, and it is equal to 4g - 313g - 3 if 

E is trivial. 
(3) The isomorphisms 3.2(b) K( I I2 )  ~ W(II1)  -~ M(l [2)  suggest relations be- 

tween the corresponding moduli spaces. As we have seen in 4.1, such relations exist, 
though in general the moduli spaces are not identical. For example, the moduli space of 

W( l ll )-supercurves is approximately one half of the whole K( I [2)-moduli space. 
The superspace of moduli of K(1]2)-curves is considered in [FR] and [DRS]. 

6. Action of ~ on moduli 

The moduli space .A,4g of compact Riemann surfaces is an infinitesimal homogeneous 

space for the Witt algebra (cf. [ACKP, BS, K] ). Similar relation exists between a 

superconformal algebra G and the moduli of G-supercurves. 

6.1 

Let G be one of the algebras 3.2(a) with the exception of S( 1 IN; ,~) for ,~ ~ Q. Con- 
sider a completion ~ of G which consists of all formal Laurent vector fields, preserving 

the structure on the G-superdisk. Take a G-supercurve C with punctures Pl . . . . .  Pk. We 

call a local coordinate system Z = (z, 01 . . . . .  0k) around one of the punctures canonical 

if the restriction of the G-structure on C to Uz = {p E Crd I 0 < Izl < 1} in these 
coordinates coincides with the standard one of 2.2. 

Consider the set ./~a.k of  equivalent classes of objects 

C = (C; ( p l , Z 1 ) ; . . . ;  (pk, Zk)) ,  (lO) 

where C is a compact G-curve, pl . . . . .  Pk are the punctures, and Zi is a canonical 
coordinate system at Pi. 

.A3la,k has a natural structure of an infinite-dimensional (formal) complex superman- 
ifold. In other words, 

~ , k  lim ^ d = .A4~, k, 
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^ d  where .Ma,~ is the collection of objects of the form (10) with Zi replaced by their 
d-jets (that is, Zi is taken modulo//d+l, where li is the defining ideal of the point Pi). 

Denote by Tc the sheaf of holomorphic vector fields which preserve the C-structure on 

C. Then we have H°(Uz~; Tc) = ~. The open subsets/)Zl . . . . .  /-]'zk and C \ {pl . . . . .  Pk} 
form a Stein covering of C, therefore we may compute the cohomology of coherent 
sheaves using this covering. The Kodaira-Spencer map 

^ d  ~ n  1 TC.A,4G, k (C; 7-c @ l - I  ( li) a+l ) 
i 

is an isomorphism for d >_ 1. As d ---, oc, we get a short exact sequence for computing 

T c J ~ , k :  

0 H ° ( C k { P l ,  pk};'-l'c) HO(HUz , ;Tc  ) __+ ^d ---~ . . . .  ~ T C . A ~ ,  k ~ O. 

i 

Finally, To.Me. k ^ a = Ck/L, where L consists of k-tuples (gl, .. • ,gk), gi E ~i = H°(Uz .',, 

Tc),  which can be extended to a vector field v E H°(C \ {Pl . . . . .  Pk}; 7-C). 
Thus we obtain an epimorphism p : ~k .._+ Vect(./C-4~,k). We can check that p is, 

actually, a homomorphism of Lie superalgebras, and therefore, it gives the desired 
action. 

Theorem 6.1. The Lie superalgebra ~k acts (infinitesimally) transitively on 2(4~,k. This 
action preserves the fibers of  the projection ./(4~,k ~ A4~,k, and therefore, defines 
an action of  ~k on A4~,k. The superalgebra C acts on .AA~,k through the diagonal 
embedding C ~ ~k. 

6.2. Semigroups of  C-annuli 

One may ask if it is possible to integrate the infinitesimal action of the superconformal 
algebra C on the moduli superspace .A4~,k to a Lie group action. The answer is negative 
for a trivial reason: there is no group to act, since the Witt subalgebra of C does not 
correspond to a complex Lie group--there is no complexification of the group Diff+ (S 1 ) 
(cf. [N] ). 

However, there exists a complex infinite-dimensional semigroup .,4 constructed by 
Yu. Neretin [N] and G. Segal [S], which can be used instead of the nonexistent 
complexification of the group Diff+(Sl). An element of .,4 is an equivalence class of 
Riemann surfaces which are topological annuli, and are equipped with parametrizations 
of their boudaries. The operation in ,4 is defined by sewing boundary components. The 
semigroup ..4 is a bounded domain, and Diff+(S 1 ) is its Shilov boundary. There exists a 
natural action of .,4 on the Riemann surfaces with parametrizied boundary components 
which extends the Witt algebra action on the moduli space. 

This construction can be generalized for the superconformal algebras and supercurves. 
In [V4] the semigroups of C-annuli are defined, and their relations with the moduli of 
C-curves are studied. 
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7. Concluding remarks 

In the end I would like to mention several natural questions and problems. Some of 
them I hope to address in future publications. 

(1) Central extensions and determinant bundles. The action of the Witt algebra on 
moduli spaces can be lifted to a canonical action of the Virasoro algebra on the total 
space of the determinant line bundle h. The line Ac at the point corresponding to the 
Riemann surface C is 

det H°(C; /2c )  ® det Hi (C;  S2c)*, (11) 

where/2c is the sheaf of holomorphic one-forms on C. 
The Lie algebra cocycle, corresponding to the extension V/r ~ W, is induced under 

the action from the Chern class of the determinant bundle a. A natural conjecture is 
that for any distinguished superconformal algebra G, its central extension acts on a 
non-trivial line bundle over the ~-moduli space. 

(2) Mumford formula. The line bundles Aj on the moduli space of Riemann surfaces 
are defined by the formula (11 ) with S2c replaced by gflc. The Mumford isomorphism 

"~ ' 1 6 j 2 - - 6 j + l  is important in the bosonic string theory. It can be understood in terms Aj  - -  "'1 

of representations of the Virasoro algebra [ACKP]. What is an analogue of this formula 

for G-supercurves? 
For K( 111)-supercurves (N = l-super Riemann surfaces) the Mumford sheaves Aj 

_ A2J - 1 were defined in [M1] and the formula Aj - "l  was proved by P. Deligne [D2] and 
A. Voronov [Vo]. 

(3) Find a relation between integrable positive energy representations of a supercon- 
formal algebra G and holomorphic representations of the semigroup of G-annuli. For 

= K(II1)  this is done in IV4]. 
(4) Super KP hierarchies. The Witt and Virasoro Lie algebras are also related with 

moduli spaces of algebraic curves via the Sato-Segal-Wilson c~-dimensional Grass- 
mannian and the Krichever construction in the theory of the Kadomtsev-Petviashvili 
hierarchy [ SW]. What are the corresponding objects for superconformal algebras? Sim- 
ilar relations for K(111) and W(111) are found in [Rd, Rb, MR, Mu]. 

(5) Compactifications. Construct a compactification of the moduli superspace of 
G-curves. Even the compactification of the underlying manifold is a non-trivial and 
interesting problem. 

For • = K(111) the even part of this superspace would be a compactification of the 
moduli space of algebraic curves with theta-characteristics. A compactification of this 
space was constructed by Cornalba [Co]. A compactification of the supermoduli space 
of K( l ll)-curves in the spirit of Deligne-Mumford was considered by Deligne [D1]. 

The even part of the moduli superspace of the untwisted K(ll2)-curves is just the 
universal Jacobian bundle over the moduli space of algebraic curves. The first work 
where a compactification of this space is considered is the thesis of L. Caporaso [Ca]. 

(6) Almost complex F-structures. A G-supercurve can be considered as a real super- 
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m a n i f o l d  o f  d i m e n s i o n  2 I N  wi th  an ext ra  s t ructure .  W h a t  are the  c o r r e s p o n d i n g  to rs ion  

c o n s t r a i n t s ?  For  supe rcu rves  o f  types  W, K (  1 I1 ) ,  and  K(112)  the  in tegrab i l i ty  t h e o r e m s  

are p r o v e d  in [V2 ,  LR,  G N W ] .  
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